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Abstract

THESIS

By Patrick W. Gaskill, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2013.

Director: Marco Aldi, Assistant Professor, Department of Mathematics and Applied Mathe-
matics.

In this thesis we present the connection between vertex operator algebras and modular

forms which lies at the heart of Borcherds’ proof of the Monstrous Moonshine conjecture.

In order to do so we introduce modular forms, vertex algebras, vertex operator algebras and

their partition functions. Each notion is illustrated with examples.
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Introduction

The definition of vertex operator algebra (VOA) was introduced in 1992 by Richard

Borcherds [1] to resolve the Conway-Norton conjecture which predicted an unexpected

connection between the largest finite simple group (the “Monster” group) and the Fourier

expansion of the j-invariant,

j(q) =
1
q

+744+196884q+21493760q2 +864299970q3 + · · · ,

a modular function which parameterizes elliptic curves up to isomorphism. Because of this

connection’s mysterious nature, this relationship became known as Monstrous Moonshine.

Borcherds would later win the Fields Medal for his work in resolving the Moonshine

conjecture.

A VOA is a vector space V together with a collection of operators acting on it satisfying

suitable axioms. This includes a chosen operator L0 such that there is a decomposition

V =
⊕

n≥0Vn into eigenspaces of L0. To this VOA one can attach a function on the upper

half plane of the form

Z(q) = q−c/24
∑
n∈Z

dimVnqn

called the partition function. In many examples, the partition function of a VOA happens

to be a modular form. However, this process is not straightforward and does not work for

some VOAs. There is much active research being done on this relationship. Borcherds

defined a VOA where the Vn are constructed from representations of the Monster group,
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and also match exactly the coefficients in the j-invariant. The notion of a VOA arises quite

naturally from physics, specifically, conformal field theory. In this case, of which Borcherds’

construction is an example, the modularity found from the partition function of a VOA is not

surprising; rather it is a property expected given the symmetries of these physical theories.

Because the history of VOAs spans many diverse areas, a full treatment is not possible,

and so we endeavor to present only the minimal background necessary to understand the

final statement given in this thesis. We cannot include all the remarkable connections to

physics and will focus only on the mathematical constructions. Hence, we will introduce

modular forms, theta functions, vertex algebras (with examples), VOAs, and their partition

functions.
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Modular forms

2.1 Modular group

Let H denote the upper half of the complex plane, that is, the set of complex numbers

z with imaginary part Im(z) > 0. Let SL2(R) be the group of 2× 2 real matrices having

determinant 1. Now define C̃ = C∪{ ∞ } and make SL2(R) act on C̃\R in the following

way: if z ∈ C̃\R and g =
(

a b
c d

)
∈ SL2(R), we put

gz =
az+b
cz+d

.

This action is also known as a Möbius transformation. Since

Im(gz) =
Im(z)
|cz+d|2

,

it follows that H is stable under the action of SL2(R). Also note that the element −1 =(−1 0
0 −1

)
∈ SL2(R) acts trivially on H. Thus we may consider the group PSL2(R) =

SL2(R)/{ ±1 }, which can be shown to be the group of all analytic automorphisms of H.

Let SL2(Z) be the subgroup of SL2(R) consisting of only the matrices with coefficients in

Z; this is a discrete subgroup of SL2(R).

DEFINITION 2.1. The group PSL2(Z) = SL2(Z)/{ ±1 } is called the modular group.

Note that PSL2(Z) is the image of SL2(Z) in PSL2(R). If g ∈ SL2(Z), we use the same

symbol to denote its image in the modular group.
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2.1.1 The fundamental domain of the modular group

This section follows the work done in Serre [4]. Let S,T ∈ PSL2(Z) with

S =

0 −1

1 0

 , T =

1 1

0 1

 .

Then the following is true:

Sz =−1/z, T z = z+1, S2 = 1, (ST )3 = 1.

Now let

D = { z ∈H | |z| ≥ 1 and |Re(z)| ≤ 1/2 } .

ρ −ρ
i

0 1−1 1
2−1

2

D

Figure 2.1: The fundamental domain D of PSL2(Z).

Using the following theorem, we show that D is the fundamental domain for the action of G

on H.

THEOREM 2.2. 1. For every z ∈H, there exists g ∈ PSL2(Z) such that gz ∈ D.

2. Let z,z′ be distinct points in D that are congruent modulo PSL2(Z). Then Re(z) =

±1/2 and z = z′±1, or |z|= 1 and z′ =−1/z.
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3. Let z ∈ D and let I(z) = { g ∈ PSL2(Z) | gz = z }, that is, the stabilizer of z in

PSL2(Z). We have I(z) = { 1 } except in the following cases:

• z = i, in which case I(z) is the group of order 2 generated by S;

• z = ρ = e2πi/3, in which case I(z) is the group of order 3 generated by ST ;

• z =−ρ = eπi/3, in which case I(z) is the group of order 3 generated by T S.

The first two assertions of the theorem imply the following corollary.

COROLLARY 2.3. The canonical map D→H/PSL2(Z) is surjective and its restriction to

the interior of D is injective.

THEOREM 2.4. PSL2(Z) is generated by S and T .

2.2 Modular functions

DEFINITION 2.5. Let k be an integer. A function f : H→ C is weakly modular of weight

2k if f is meromorphic on H and verifies the relation

f (z) = (cz+d)−2k f
(

az+b
cz+d

)
for all

a b

c d

 ∈ SL2(Z). (2.1)

Let g be the image in PSL2(Z) of
(

a b
c d

)
. We have d(gz)/dz = (cz+d)−2. Then equation

(2.1) can be written:
f (gz)
f (z)

=
(

d(gz)
dz

)−k

or

f (gz)d(gz)k = f (z)(dz)k.

We can interpret this as meaning that the “differential form of weight k” f (z)dzk is invariant

under PSL2(Z). Since PSL2(Z) is generated by the elements S and T (from Theorem 2.4), it



www.manaraa.com

6

suffices to check the invariance by S and by T . This gives the following property of weakly

modular functions:

COROLLARY 2.6. Let f be meromorphic on H. The function f is a weakly modular function

of weight 2k if and only if it satisfies the two relations:

f (z+1) = f (z)

f (−1/z) = z2k f (z).

If the first relation is verified, we can then write f as a function of q = e2πiz, which we will

denote f̃ . Note that f̃ is meromorphic in the disk |q|< 1 with the origin removed.

DEFINITION 2.7. If f̃ may be extended to a meromorphic (holomorphic) function at the

origin, we say that f is meromorphic (holomorphic) at infinity.

This means that f̃ admits a Laurent expansion in a neighborhood around the origin

f̃ (q) = ∑
n∈Z

anqn,

where the an is zero for small enough n.

DEFINITION 2.8. A modular function is a weakly modular function that is holomorphic at

infinity. If f is holomorphic at infinity, we set f (∞) = f̃ (0) and call that the value of f at

infinity. A modular function which is holomorphic everywhere (including infinity) is called

a modular form. If such a function is zero at infinity, it is called a cusp form. A modular

form of weight 2k is given by a series

f (z) =
∞

∑
n=0

anqn =
∞

∑
n=0

ane
2πinz
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which converges for |q|< 1 (that is, for Im(z) > 0), and which verifies the identity

f (−1/z) = z2k f (z).

Note that if the coefficient a0 is 0, then f is a cusp form.

Note that if f and f ′ are modular forms of weight 2k and 2k′ respectively, their product

f f ′ is also a modular form of weight 2k+2k′. More generally, we say f (z) is a modular form

of weight ±p/q, with p,q ∈ Z+, if f (z+1) = f (z), f (−1/z) = z±2p/q f (z), and ( f (z))±2q

is a modular form of weight 2p.

2.2.1 Eisenstein series

The Eisenstein series serves as our first example and will be useful in discussing the space

of modular forms. This section combines the discussion of the Eisenstein series in both

Serre [4] and Stein [5].

DEFINITION 2.9. Let Γ be a lattice of C, and let k > 1 be an integer. The Eisenstein series

of weight 2k is a function on H defined as

Gk(z) = ∑
(n,m)6=(0,0)

1
(mz+n)2k .

THEOREM 2.10. Eisenstein series have the following properties:

1. The series Gk(z) converges if k > 1, and is holomorphic in H.

2. Gk(z+1) = Gk(z) and Gk(z) = z−kGk(−1/z).

3. Gk(z) is a modular form of weight 2k.

4. Gk(∞) = 2ζ (2k) where ζ is the Riemann zeta function.



www.manaraa.com

8

We first state the following lemma and its proof [5] in order to prove the convergence of

Gk(z):

LEMMA 2.11. Let Γ = { n+mτ | n,m ∈ Z }, and Γ ′ = Γ \{ (0,0) }, that is, a lattice with

the origin removed. The two series

∑
(n,m)6=(0,0)

1
(|n|+ |m|)r and ∑

n+mτ∈Γ ′

1
|n+mτ|r

converge if r > 2.

Proof. The question of whether a double series converges absolutely is independent of the

order of summation; in this case we first sum in m and then in n. For the first series, the

usual integral comparison can be applied. For each n 6= 0,

∑
m∈Z

1
(|n|+ |m|)r =

1
|n|r

+2 ∑
m≥1

1
(|n|+ |m|)r

=
1
|n|r

+2 ∑
k≥|n|+1

1
kr

≤ 1
|n|r

+2
∫

∞

|n|

dx
xr

≤ 1
|n|r

+C
1

|n|r−1 ,

where C is the constant of integration. Therefore, r > 2 implies

∑
(n,m)6=(0,0)

1
(|n|+ |m|)r = ∑

|m|r
+ ∑
|n|6=0

∑
m∈Z

1
(|n|+ |m|)r

≤ ∑
|m|6=0

1
|m|r

+ ∑
|n|6=0

(
1
|n|r

+C
1

|n|r−1

)

< ∞.
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To prove that the second series also converges, it suffices to show that there is a constant c

such that |n|+ |m| ≤ c |n+mτ| for all n,m ∈ Z.

We use the notation x . y if there exists a positive constant a such that x≤ ay. We also

write x≈ y if both x . y and y . x hold. Note that for any two positive numbers A and B,

we have

(A2 +B2)1/2 ≈ A+B.

On one hand, A ≤ (A2 + B2)1/2 and B ≤ (A2 + B2)1/2, so that A + B ≤ 2(A2 + B2)1/2. On

the other hand, it suffices to square both sides to see that (A2 +B2)1/2 ≤ A+B. The proof

that the second series converges is now a consequence of the observation that

|n|+ |m| ≈ |n+mτ| whenever τ ∈H.

If we write τ = s+ it, with s, t ∈ R and t > 0, then

|n+mτ|= [(n+ms)2 +(mt)2]1/2 ≈ |n+ms|+ |mt| ≈ |n+ms|+ |m|

by the previous observation. Then,

|n+ms|+ |m| ≈ |n|+ |m| ,

by considering the two cases when |n| ≤ 2 |m| |s| and |n| ≥ 2 |m| |s|.

This proof shows that when r > 2 the series ∑ |n+mτ|−r converges uniformly in every

half-plane Im(τ)≥ δ > 0. In contrast, when r = 2 this series fails to converge.

Now we can prove Theorem 2.10.

Proof. From the above lemma, the series Gk(z) converges absolutely and uniformly in every

half-plane Im(z)≥ δ > 0, whenever k > 1; hence Gk(z) is holomorphic in H, which gives
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us (1). Clearly Gk(z) is periodic and has period 1 since n+m(z+1) = n+m+mz, and that

we can rearrange the sum by replacing n+m by n. Also, we have

(n+m(−1/z))k = z−k(nz−m)k,

and again we can rearrange the sum, this time replacing (−m,n) by (n,m), and so (2)

follows. Property (3) follows directly from (1) and (2). To see property (4), observe that

lim
Im(z)→∞

Gk(z) = ∑
n6=0

1
n2k = 2

∞

∑
n=1

1
n2k = 2ζ (2k).

The Eisenstein series of lowest weights are G2 and G3, which are of weight 4 and 6

respectively. Because of their significance to the theory of elliptic curves (which is beyond

the scope of this thesis), we define

g2 = 60G2, g3 = 140G3.

Then have we have g2(∞) = 120ζ (4) and g3(∞) = 280ζ (6). Since ζ (4) = π4/90 and

ζ (6) = π6/945, we can write

g2(∞) =
4
3
π4, g3(∞) =

8
27
π6.

In particular, the modular discriminant

∆ = g3
2−27g2

3

is a cusp form of weight 12.
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2.3 Space of modular forms

DEFINITION 2.12. Let f be a meromorphic function on H that is not identically zero, and

let p be a point in H. Then the largest integer n such that f (z)/(z− p)n is holomorphic and

non-zero at p is called the order of f at p and is denoted νp( f ).

REMARK 2.13. The order of f at p is invariant under the action of PSL2(Z), that is,

νp( f ) = νg(p)( f ) for g ∈ PSL2(Z).

Proof. Suppose that νp( f ) = n. If we take the Laurent expansion of f (z) at p

f (z) =
a−n

(z− p)n +
a−n+1

(z− p)n−1 + · · ·+a0 +a1(z− p)+ · · ·

and apply the transformation z 7→ z+1, we have

f (z+1) =
a−n

((z+1)− (p+1))n +
a−n+1

((z+1)− (p+1))n−1 + · · ·

=
a−n

(z− p)n +
a−n+1

(z− p)n−1 + · · ·

Thus f (z) has a pole or zero of order n if and only if f (z+1) has one as well. Furthermore,

since f (z) is a modular function, we can take the identity

f (z) = (cz+d)−2k f
(

az+b
cz+d

)
,

and substitute in the representation of this transformation, the matrix T from above, to see

that f (z) = f (z+1).
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Similarly, we apply the transformation z 7→ −1/z to the Laurent expansion of f (z) to get

f (−1/z) =
a−n(

−1
z + 1

p

)n + · · ·= a−n(
z−p
pz

)n + · · ·= a−n pnzn

(z− p)n + · · ·

Since pnzn is just a positive number, it does not affect our result. We then use the generating

matrix S from above in the identity to get

f (z) = z−2k f (−1/z).

Therefore, the order νp( f ) is invariant under the action of PSL2(Z).

We can also define ν∞( f ) as the order for q = 0 of the function f̃ (q) associated to f (cf.

Section 2.2).

Denote by ep the order of the stabilizer of p. If p is congruent modulo PSL2(Z) to i then

ep = 2. If instead p is congruent modulo PSL2(Z) to ρ = e2πi/3, then ep = 3. Otherwise,

ep = 1.

PROPOSITION 2.14. Let f be a modular function of weight 2k that is not identically zero.

Then,

v∞( f )+
1
2

vi( f )+
1
3

νρ( f )+ ∑
∗

p∈H/PSL2(Z)
νp( f ) =

k
6
, (2.2)

where the symbol ∑
∗ means a summation over points in H/PSL2(Z) distinct from the

equivalency classes of i and ρ [4].

Proof. We shall integrate 1
2πi

d f
f along the boundary of the fundamental domain of PSL2(Z).

Suppose that f has no poles or zeroes on the boundary of D except possibly at i,ρ, and

−ρ . (Any other poles or zeroes along these half-lines can be easily dealt with by slight
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0 1−1 1
2−1

2

A

B

B′
C C′ D

D′

E

Figure 2.2: The contour C .

modification of the contour and using the PSL2(Z) symmetry.) Then there is a contour

C (see Figure 2.2) whose interior contains a representative of each pole or zero of f not

congruent to i or ρ . By the residue theorem, we have

1
2πi

∫
C

d f
f

= ∑
∗

p∈H/PSL2(Z)
νp( f ).

The top segment EA of the contour may be transformed by the change of variables q = e2πiz

into a circle ω centered at 0 to get

1
2πi

∫ A

E

d f
f

=
1

2πi

∫
ω

d f
f

=−ν∞( f ).

The integral of 1
2πi

d f
f on the circle which contains the arc BB′, oriented negatively, has the

value −νρ( f ). As the radius r1 of this circle goes to 0, the angle between B and B′ goes to
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2π/6. Hence,

lim
r1→0

1
2πi

∫ B′

B

d f
f

=−1
6

νρ( f ).

Similarly, if we let the radii r2 and r3 of the arcs CC′ and DD′, respectively, go to 0, we have

lim
r2→0

1
2πi

∫ C′

C

d f
f

=−1
2

νi( f ),

lim
r3→0

1
2πi

∫ D′

D

d f
f

=−1
6

νρ( f ).

T transforms the arc AB into the arc ED′, and since f (T z) = f (z), we have

1
2πi

∫ B

A

d f
f

+
1

2πi

∫ E

D′

d f
f

= 0.

S transforms the arc B′C into the arc DC′, and since f (Sz) = z2k f (z), we have

d f (Sz)
f (Sz)

= 2k
dz
z

+
d f (z)
f (z)

,

and thus

1
2πi

∫ C

B′

d f
f

+
1

2πi

∫ D

C′

d f
f

=
1

2πi

∫ C

B′

(
d f (z)
f (z)

− d f (Sz)
f (Sz)

)
=

1
2πi

∫ C

B′

(
−2k

dz
z

)
.

When we let the radii of the arcs BB′, CC′, and DD′ go to 0, we have

lim
r1,r2,r3→0

1
2πi

∫ C

B′

(
−2k

dz
z

)
=−2k

(
− 1

12

)
=

k
6
.

We can now set the two different expressions for 1
2πi
∫
C

d f
f equal, and again take the limit to

find the desired formula.
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For an integer k, we denote the C-vector space of modular forms of weight 2k by Mk

(and similarly the cusp forms of weight 2k by M0
k ). By definition, M0

k is the kernel of the

linear form f 7→ f (∞) on Mk. Thus we have dimMk/M0
k ≤ 1. For k ≥ 2, the Eisenstein

series Gk (see Section 2.2.1) is an element of Mk such that Gk(∞) 6= 0, therefore we have

that

Mk = M0
k ⊕CGk,

where CGk is the complex vector space spanned by Gk.

THEOREM 2.15. The following statements are true:

1. If k < 0 or k = 1, Mk = 0.

2. For k = 0,2,3,4,5, respectively, Mk is a vector space of dimension 1 with basis

1,G2,G3,G4,G5, respectively. Furthermore M0
k = 0.

3. Multiplication by ∆ defines an isomorphism from Mk−6 onto M0
k . (Recall from above

that ∆ = g3
2−27g2

3.)

Proof. We give a proof of the third statement of Theorem 2.15. Consider (2.2) above

with f = Gk,k = 2. Write 2/6 in the form n + n′/2 + n′′/3 where n,n′,n′′ ≥ 0 only when

n = 0,n′ = 0,n′′ = 1. Hence νρ(G2) = 1 and νρ(G2) = 0 for p 6= ρ (modulo PSL2(Z)).

Apply a similar argument to G3 and thus νi(G3) = 1 and all the others νp(G3) = 0. This

shows that ∆ is not zero at i, and hence ∆ is not identically zero. Since ∆ is of weight 12

and ν∞(∆)≥ 1, (2.2) implies that νp(∆) = 0 for p 6= 0 and ν∞(∆) = 1. That is, ∆ does not

vanish on H and has a simple zero at infinity. If f ∈M0
k , and we set g = f /∆ , then it is easy
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to show that g is of weight 2k−12. The formula

νp(g) = νp( f )−νp(∆) =


νp( f ) p 6= ∞,

νp( f )−1 p = ∞

implies νp(g)≥ 0 for all p, and so g ∈Mk−6.

COROLLARY 2.16. We have

dimMk =


[k/6], k ≡ 1 (mod 6),k ≥ 0

[k/6]+1, k 6≡ 1 (mod 6),k ≥ 0.

(Here [x] denotes the largest integer n such that n≤ x.)

COROLLARY 2.17. The space Mk has for a basis the family of monomials Gα
2 Gβ

3 where

α,β are non-negative integers with 2α +3β = k.

For example, G4 = 9
2π2 G2

2G0
3, since 2(2)+3(0) = 4. The coefficient 9/2π2 results from

the property stated in Theorem 2.10, where we have computed that ζ (8)/ζ (4)ζ (6) = 9/π2.

Because this is the only way to write 4 as a linear combination of 2 and 3 with non-negative

coefficients, this is the only possible way to write a basis of M4 as such a family of monomials.

Similarly, G5 = 5
11G1

2G1
3 since 2(1)+3(1) = 5.

2.4 Poisson summation formula

DEFINITION 2.18. Let V be a R-vector space of finite dimension n with an invariant measure

µ . Denote the dual of V by V ∗. Let f be a rapidly decreasing smooth function on V . Then
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the Fourier transform f̂ of f is defined as

f̂ (y) =
∫

V
e−2πi〈x,y〉 f (x)µ(x).

This is a rapidly decreasing smooth function on V ∗. The Poisson summation formula [5]

gives us a relationship between a function and its Fourier transform. For each a > 0, we

denote by Fa the class of all functions f that satisfy the following two conditions:

1. The function f is holomorphic in the horizontal strip Sa = { z ∈ C | |Im(z)|< a }.

2. There exists a constant A > 0 such that

| f (x+ iy)| ≤ A
1+ x2 for all x ∈ R and |y|< a.

In other words, Fa consists of the holomorphic functions on Sa that are of moderate decay

on each horizontal line Im(z) = y, uniformly in −a < y < a. We denote by F the class of

all functions that belong to Fa for some a.

THEOREM 2.19 (Poisson summation formula [5]). If f ∈F , then

∑
n∈Z

f (n) = ∑
n∈Z

f̂ (n).

Proof. Say f ∈Fa and choose some b satisfying 0 < b < a. The function 1/(e2πiz−1) has

simple poles with residue 1/(2πi) at the integers. Thus f (z)/(e2πiz−1) has simple poles at

the integers n, with residues f (n)/2πi. Therefore we may apply the residue formula to the

contour γN where N is an integer, a rectangle centered at the origin of width 2N and height

1. This yields

∑
|n|≤N

f (n) =
∫

γN

f (z)
e2πiz−1

dz.
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Letting N go to infinity and recalling that f has moderate decrease, we see that the sum

converges to ∑n∈Z f (n), and also that the integral over the vertical segments of the rectangle

cancel each other out. Therefore, in the limit we have

∑
n∈Z

f (n) =
∫

L1

f (z)
e2πiz−1

dz−
∫

L2

f (z)
e2πiz−1

dz, (2.3)

where L1 and L2 are the real line shifted down and up by b, respectively.

Now we use the fact that if |w|> 1, then

1
w−1

= w−1
∞

∑
n=0

w−n

to see that on L1 (where
∣∣e2πiz

∣∣> 1) we have

1
e2πiz−1

= e−2πiz
∞

∑
n=0
e−2πinz.

Also if |w|< 1, then
1

w−1
=−

∞

∑
n=0

wn

so that on L2

1
e2πiz−1

=−
∞

∑
n=0
e2πinz.
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Substituting these observations into (2.3), we find that

∑
n∈Z

f (n) =
∫

L1

f (z)

(
e−2πiz

∞

∑
n=0
e−2πinz

)
dz+

∫
L2

f (z)

(
∞

∑
n=0
e2πinz

)
dz

=
∞

∑
n=0

∫
L1

f (z)e−2πi(n+1)z dz+
∞

∑
n=0

∫
L2

f (z)e2πinz dz

=
∞

∑
n=0

∫
∞

−∞

f (x)e2πi(n+1)x dx+
∞

∑
n=0

∫
∞

−∞

f (x)e2πinx dz

=
∞

∑
n=0

f̂ (n+1)+
∞

∑
n=0

f̂ (−n)

= ∑
n∈Z

f̂ (n),

where we have shifted L1 and L2 back to the real line.

We also state the more general version of the Poisson summation formula for lattices [4],

which will become useful later when defining the theta function for a lattice.

Let Γ be a lattice in V ∗. Then denote by Γ ∗ the lattice in V ∗ that is dual to Γ , that is,

Γ ∗ = { y ∈V ∗ | 〈x,y〉 ∈ Z for all x ∈ Γ } . It can be easily checked that Γ ∗ can be identified

with the Z-dual of Γ .

THEOREM 2.20 (Poisson summation formula for lattices). Let v = µ(V/Γ ) be the volume

of the lattice Γ in V . The Poisson summation formula is defined as

∑
x∈Γ

f (x) =
1
v ∑

y∈Γ ∗
f̂ (y).

Proof. We may rescale the measure by the volume, so we can assume µ(V/Γ ) = 1. By

fixing a basis of Γ , we identify V with Rn according to the coefficients of those basis vectors,

and Γ is identified with Zn. The space of linear maps is also identified with Rn and Γ ∗

with Zn, so we reduce to the usual Poisson summation for Rn, the proof of which is given

above.
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2.5 Theta functions

The theta function of Jacobi makes appearances in many areas of mathematics: combina-

torics, number theory, partial differential equations, and as an important link between elliptic

functions and modular forms [4].

In its most general form, Jacobi’s theta function is defined for z ∈ C and τ ∈H by

Θ(z | τ) = ∑
n∈Z
eπin

2τe2πinz. (2.4)

This function is remarkable in that it has a dual nature: when viewed as a function of z, it

appears in the context of elliptic functions (since Θ is periodic with period 1 and “quasi-

period” τ), but when considered as a function of τ , Θ appears in the world of modular forms,

partition functions (cf. Section 3.7), and in the problem of representation of integers as sums

of squares [5].

There are two significant special cases of Θ , defined by

θ(τ) =
∞

∑
n=−∞

eπin
2τ , τ ∈H,

ϑ(t) =
∞

∑
n=−∞

e−πn2t , t > 0.

The relation between these functions is given by θ(τ) = Θ(0 | τ) and ϑ(t) = θ(it), with

t > 0.

We will primarily be concerned with θ(τ), but first let us state some structural properties

of Θ .

THEOREM 2.21. The function Θ satisfies the following properties:

1. Θ is entire in z ∈ C and holomorphic in τ ∈H.

2. Θ(z+1 | τ) = Θ(z | τ).
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3. Θ(z+ τ | τ) = Θ(z | τ)e−πiτe−2πiz.

4. Θ(z | τ) = 0 whenever z = 1/2+ τ/2+n+mτ and n,m ∈ Z.

Proof. We sketch the proof of part 1, referring the reader to [5] for the remaining steps.

Suppose that Im(τ) = t ≥ t0 > 0 and z = x+ iy belongs to a bounded set in C, say, |z| ≤M.

Then the series defining Θ is absolutely and uniformly convergent since

∞

∑
n=−∞

∣∣∣eπin2τe2πinz
∣∣∣≤C ∑

n≥0
e−πn2t0e2πnM < ∞.

Therefore, for each fixed τ ∈H the function Θ(· | τ) is entire, and for each fixed z ∈ C, the

function Θ(z | ·) is holomorphic in H.

We will need the following theorem later when showing that the Dedekind eta function

is a modular form:

THEOREM 2.22. If τ ∈H, then

Θ(z | −1/τ) =
√

τ

i
eπiτz2

Θ(zτ | τ) for all z ∈ C. (2.5)

Here
√

τ/i denotes the branch of the square root defined on H, that is positive when

τ = it, t > 0.

Proof. It suffices to prove the formula for z = x ∈ R and τ = it with t > 0, since for each

fixed x ∈R, the two sides of (2.5) are holomorphic in H and agree on the positive imaginary

axis, and so they must be equal everywhere. Also, for a fixed τ ∈ H, both sides define

holomorphic functions in z that agree on the real axis, and so they must be equal everywhere.

With x ∈ R and τ = it, (2.5) becomes

∞

∑
n=−∞

e−πn2/te2πinx = t1/2e−πtx2
∞

∑
n=−∞

e−πn2te−2πnxt .
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Replacing x with a, we must now prove

∞

∑
n=−∞

e−πt(n+a)2
=

∞

∑
n=−∞

t−1/2e−πn2/te−2πina.

To do this, first observe that if ξ ∈ R, then we can obtain through contour integration the

following:

e−πξ 2
=
∫

∞

−∞

e−πx2
e−2πixξ dx.

This shows us that e−πx2
is its own Fourier transform (cf. Section 2.4). We fix values for

t > 0 and a ∈ R, and then make a change of variables x 7→ t1/2(x+a) in the above integral

to get that the Fourier transform of the function

f (x) = e−πt(x+a)2

is f̂ (ξ ) = t−1/2e−πξ 2/te2πiaξ . Apply the Poisson summation formula to both f and f̂ to get

the relation
∞

∑
n=−∞

e−πt(n+a)2
=

∞

∑
n=−∞

t−1/2e−πn2/te2πina, (2.6)

as desired.

We can now turn our attention to the version of the theta function defined on lattices.

Let V be a R-vector space of finite dimension endowed with a symmetric bilinear form x.y

which is positive and nondegenerate (that is, x.x > 0 if x 6= 0). We may identify V with V ∗

through this bilinear form. Let Γ be a lattice in V ∗; the lattice Γ ∗ becomes a lattice in V (we

have y ∈ Γ ∗ if and only if x.y ∈ Z for all x ∈ Γ ).

We will be interested in pairs (V,Γ ) that satisfy the following two properties:

1. The dual Γ ∗ of Γ is equal to Γ .

2. For all x ∈ Γ , we have x.x≡ 0 (mod 2).
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Let m≥ 0 be an integer, and denote by rΓ (m) the number of elements x of Γ such that

x.x = 2m. It is easy to show that rΓ (m) is bounded by a polynomial in m, hence the series

with integer coefficients
∞

∑
m=0

rΓ (m)qm = 1+ rΓ (1)q+ · · ·

converges for |q|< 1, so we may define a function θΓ on H by the following:

θΓ (τ) =
∞

∑
m=0

rΓ (m)qm.

(Recall that q = e2πiz.) From a simple counting argument, we have that

θΓ (τ) =
∞

∑
m=0

rΓ (m)qm = ∑
x∈Γ

q(x.x)/2.

The function θΓ is called the theta function of Γ . Since θΓ does converge for |q|< 1, it is

indeed analytic and hence holomorphic on H.

THEOREM 2.23. The function θΓ satisfies the equation

θΓ (it) = it−n/2 1
µ(V/Γ )

ΘΓ ∗

(
1
it

)
.

In particular, if Γ = Γ ∗ = Z, we have

θΓ (it) =
1√
t
θΓ

(
1
it

)
.

Proof. We will apply Poisson summation to the function f (x) = e−πx.x, a rapidly decreasing

smooth function on V . To determine the Fourier transform of f , fix an orthonormal basis

for V that identifies V with Rn so that the measure becomes dx = dx1 · · ·dxn and the inner
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product simplifies to f = e−π(x2
1+···+x2

n). Hence the Fourier coefficient

f̂ (x) =
∫

Rn
e−2πi(x1y1+···+xnyn)e−π(y2

1+···+y2
n) dy

can be realized as an iterated integral which is identical in each coordinate. Choose one

such integral, complete the square in the exponent and evaluate to find the Fourier transform

of e−πx2
is again e−πx2

, and so f equals f̂ .

The theta function has summands e−πtx·x. Again, use the function f defined above, now

for the lattice t1/2Γ , which is a translation of all elements of Γ by t1/2. Its volume in V is

t1/2µ(V/Γ ) where n is the dimension of V , and its dual is t−1/2Γ ′ by definition. Applying

the Poisson summation formula for lattices gives the desired result.

If we require the dual lattice Γ ∗ to be equal to Γ , we can apply Theorem 2.23 to give

θΓ (−1/it) = tn/2
θΓ (it).

Since θΓ (−1/z) and (iz)n/2θΓ (z) are both analytic in z, and are equal for z on the positive

imaginary axis, then by analytic continuation it is true for all z ∈ H. Hence we have the

following:

PROPOSITION 2.24. Let Γ be a self-dual lattice. For any z ∈H,

θΓ (−1/z) = (iz)n/2
θΓ (z).

THEOREM 2.25. The following statements are true:

1. The dimension n of V is divisible by 8.

2. The function θΓ is a modular form of weight n/2.
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Proof. The proof of the second statement follows directly from Proposition 2.24. Using the

fact that n is divisible by 8, we can rewrite the equation as

θΓ (−1/z) = zn/2
θΓ (z),

which shows that θΓ is indeed a modular form of weight n/2.

2.5.1 Dedekind eta function

Another example of a modular form with connections to these theta functions, as well as

some relevance to the study elliptic curves, is the Dedekind eta function.

DEFINITION 2.26. Let τ ∈H. Then the Dedekind eta function is defined to be

η(τ) = eπiτ/12
∞

∏
n=1

(1−e2πinτ).

It is interesting to note (and somewhat surprising) that η24(τ) = ∆(z), the modular

discriminant defined above.

It is easy to show that η(τ) satisfies the first (periodic) relation of a modular form of

weight 1/2; we now give the proof that it also satisfies the second relation as well:

Proof. We begin by differentiating the triple product form of the general Jacobi theta

function

Θ(z | τ) = (1+qe−2πiz)
∞

∏
n=1

(1−q2n)(1+q2n−1e2πiz)(1+q2n+1e−2πiz)

and evaluating it at z0 = 1/2+ τ/2 to see that

Θ
′(z0 | τ) = 2πiH(τ), where H(τ) =

∞

∏
n=1

(1−e2πinτ)3.
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Next, we observe that by replacing τ with −1/τ in (2.5), we obtain

Θ(z | −1/τ) =
√

τ/ieπiτz2
Θ(zτ | τ).

We differentiate this and evaluate it at z0 to see that

Θ
′(z0 | τ) = 2πiH(τ) =

√
i/τe−

πi
4τ e−

πi
2 e−

πiτ
4

(
−2πi

τ

)
H(−1/τ).

Combining these two evaluations for Θ ′(z0 | τ), we have

e
πiτ

4 H(τ) =
(
i

τ

)3/2

e−
πi
4τ H(−1/τ).

Since τ ∈H, η(τ) is positive so we may take the cube root of the above to get

η(τ) =
√
i/τη(−1/τ).

This identity holds for all τ ∈H by analytic continuation.
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Vertex algebras

3.1 Notation

From here on out we assume that all vector spaces are defined over C and that linear

transformations are C-linear. We use End(V ) to denote the space of all endormorphisms of

a vector space V . We continue to use q = e2πiτ .

We use this notation for the following formal power series:

V [[z,z−1]] =

{
∑
n∈Z

anzn | an ∈V

}
,

V [[z]][z−1] =

{
∞

∑
n=−M

anzn | an ∈V

}
.

These form linear spaces with respect to the obvious addition and scalar multiplication.

Given a formal power series in one variable, f (z) = ∑n∈Z anzn, we define its formal

residue at 0 to be

Res f (z)dz = Resz=0 f (z)dz = a−1.

3.1.1 The formal delta function

We will make use of the following important power series in two variables:

DEFINITION 3.1. The formal delta function [2] is

δ (z−w) = ∑
n∈Z

znw−n−1.
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This delta function can be multiplied by an arbitrary formal power series in one variable

(that is, depending only on z or w) since its coefficients amn = δm,−n−1 are supported on the

diagonal m+n =−1. Carrying out such a multiplication, we obtain

a(w)δ (z−w) = ∑
n∈Z

anwn
∑

m∈Z
zmw−m−1 = ∑

m,n∈Z
am+n+1zmwn,

so each coefficient is well-defined. This formula shows that when considered as a formal

power series

a(z)δ (z−w) = a(w)δ (z−w), (3.1)

which is the motivation for calling this the “delta function.” Furthermore, from induction on

(3.1) applied to a(z) = z, we have that

(z−w)n+1
∂

n
wδ (z−w) = 0. (3.2)

3.2 Fields and locality

DEFINITION 3.2. A formal power series

a(z) = ∑
n∈Z

anz−n ∈ EndV [[z,z−1]]

is called a field if for any v ∈V we have an · v = 0 for large enough n, that is, if

a(z) · v ∈V [[z]][z−1].
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Intuitively, this means that a field is a Laurent series with coefficients in End(V ) that

truncates in the negative direction. A field defines a linear map

a(z) : V →V [[z,z−1]]

v 7→ ∑
n∈Z

an(v)z−n−1.

Furthermore, we define the space of fields

F(V ) =
{

a(z) ∈ End(V )[[z,z−1]] | a(z) is a field
}

.

Note that F(V ) is a subspace of End(V )[[z,z−1]]. It is easy to check that the product of fields

is a field, and that the derivative of a field is also a field.

We call the individual endormorphisms an the modes of a(z), and the elements of V the

states. Hence V is called the state space.

DEFINITION 3.3. a(z),b(z) ∈ End(V )[[z,z−1]] are called mutually local if there exists a

nonnegative integer k such that

(z1− z2)k[a(z1),b(z2)] = 0. (3.3)

Locality defines a symmetric relation which is generally neither reflexive nor transitive. Fix

a nonzero state 1 ∈V . We say that a(z) ∈ F(V ) is creative (with respect to 1) and creates

the state u if

a(z)1 = u+ · · · ∈V [[z]].

We sometimes write this in the form a(z)1 = u+O(z). In terms of modes,

an1 = 0, n≥ 0, a−11 = u.
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Later, when we wish to establish the locality of the fields in the Heisenberg vertex algebra,

we will avoid some tedious calculation and instead use the following general result.

LEMMA 3.4. If a(z) and b(w) are mutually local then ∂ n
z a(z) and ∂ m

w b(w) are mutually

local for any m,n≥ 0.

Proof. We see that ∂ n
z b(z) and ∂ m

w b(w) are mutually local from differentiating (z−w)N [a(z),b(w)]=

0, for some N, with respect to z and multiplying the result by (z−w) to obtain

(z−w)N+1[∂za(z),b(w)] = 0,

so ∂za(z) and b(w) are mutually local. By induction, ∂ n
z b(z) and ∂ m

w b(w) are local for any

m,n≥ 0.

3.2.1 Normally ordered products

When dealing with the locality of fields, it will be useful to define a special product which

essentially amounts to a lexicographic reordering of terms in the usual product. First, for

notation’s sake we define for f (z) = ∑n∈Z fnzn ∈ C((z)),

f+(z) = ∑
n≥0

fnzn, f−(z) = ∑
n<0

fnzn.

DEFINITION 3.5. Let a(z) = ∑n∈Z anz−n−1 and b(w) = ∑m∈Z bmw−m−1 be fields. The

normally ordered product of a(z) and b(w) is

:a(z)b(w): = a(z)+b(w)+b(w)a(z)−

= ∑
n∈Z

(
∑

m<0
ambnz−m−1 + ∑

m≥0
bnamz−m−1

)
w−n−1.
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In general, the normally ordered product is neither commutative nor associative. Also, by

convention, we read the normal ordering from left to right, so that

:a(z)b(z)c(z): = :a(z)(:b(z)c(z):) :.

LEMMA 3.6. The normally ordered product also satisfies the relation

:a(w)b(w): = Resz=0(δ (z−w)−a(z)b(w)+δ (z−w)+b(w)a(z)),

where

δ (z−w)+ = ∑
m≥0

zmw−m−1, δ (z−w)− = ∑
m<0

zmw−m−1.

Proof. Since Resz=0(δ (z−w)±a(z)) = a∓(w), and residue is linear, we have

Resz=0(δ (z−w)−a(z)b(w)+δ (z−w)+b(w)a(z)) = a+(w)b(w)+b(w)a−(z)

= :a(w)b(w):.

LEMMA 3.7 (Dong’s Lemma [2]). Let a(z),b(z),c(z) be mutually local fields. Then

:a(z)b(z): and c(z) are mutually local as well.

Proof. By assumption we may find r such that for all s≥ r,

(w− z)sa(z)b(w) = (w− z)sb(w)a(z),

(u− z)sa(z)c(u) = (u− z)sc(u)a(z),

(u−w)sb(w)c(u) = (u−w)sc(u)b(w).
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We wish to find an integer N such that

(w−u)N :a(w)b(w):c(u) = (w−u)Nc(u):a(w)b(w):.

Using Lemma 3.6, this will follow from the statement

(w−u)N (δ (z−w)−a(z)b(w)+δ (z−w)+b(w)a(z))c(u)

= (w−u)Nc(u)(δ (z−w)−a(z)b(w)+δ (z−w)+b(w)a(z)) .
(3.4)

By taking N = 3r and writing

(w−u)3r = (w−u)r
2r

∑
s=0

(
2r
s

)
(w− z)s(z−u)2r−s,

we see that the terms on the left hand side of (3.4) with r < s≤ 2r vanish, since one factor

of (z−w) kills the sum δ (z−w)−+δ (z−w)+ = δ (z−w), while we will still have at least

r such factors, allowing us to switch the order of a(z),b(w) by their locality. The terms

with 0 ≤ s ≤ r have (z− u) appearing to a power of at least r, which allows us to move

c(u) through a(z) while also still having (w−u) to the rth power, so that we can move c(u)

through b(w). Similarly, on the right hand side, the terms with r < s≤ 2r will vanish, and

the other terms give us the same expression as on the left hand side. This establishes (3.4)

and the lemma.

3.3 Axioms for a vertex algebra

DEFINITION 3.8. A vertex algebra (VA) consists of the following data:

1. (state space) a Z+-graded vector space V =
⊕

m≥0Vm,;
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2. (state-field correspondence) a linear map

Y : V → F(V ),

v 7→ Y (v,z) = ∑
n∈Z

vnz−n−1,

where the state v ∈Vm is associated to the field Y (v,z) of conformal dimension m, that

is, degvn =−n+m−1;

3. (vacuum state) a nonzero state 1 ∈V ;

4. (translation operator) a linear operator D ∈ End(V ),

which satisfy the following axioms for all u,v ∈V :

1. (locality axiom) Y (u,z) ∼ Y (v,z), that is, all fields Y (u,z) are local with respect to

each other;

2. (vacuum axiom) Y (|0〉 ,z) = IdV . Furthermore, for any v ∈ V we have Y (v,z) |0〉 ∈

V [[z]], so that Y (v,z) |0〉 has a well-defined value at z = 0, and

Y (v,z) |0〉 |z=0= v;

3. (translation axiom) [D,Y (u,z)] = ∂zY (u,z) and D |0〉= 0.

It is common in the literature to refer to the state space V itself as a vertex algebra rather

than (V,Y,1,D). Intuitively, we can think of the creativity axiom to mean that Y (u,z) creates

the state u out of the vacuum state.



www.manaraa.com

34

3.4 The Heisenberg vertex algebra

We will now construct our first important example: the Heisenberg vertex algebra. In the

context of conformal field theory, this models a single free (in the physics sense) boson.

We give a concrete construction that begins by defining a particular Lie algebra and then

endowing it with the structure of a vertex algebra [2].

DEFINITION 3.9. The Heisenberg Lie algebra hn is the 2n+1-dimensional real Lie algebra

with basis elements

{ P1, . . . ,Pn,Q1, . . . ,Qn,C }

and Lie bracket defined by

[Pi,Pj] = [Qi,Q j] = [Pi,C] = [Qi,C] = [C,C] = 0, [Pi,Q j] = Cδi j,

for all i, j = 1, . . . ,n.

Now we will construct a representation of the Heisenberg Lie algebra. Let π = C[b−1,b−2, . . .]

and for v ∈ π , we let bn act in the following way:

bnv =


bnv, n < 0

n ∂

∂b−n
v, n≥ 0.

It follows that [bn,b−n] = n, or more generally, [bn,bm] = nδn,−m1. Hence, π forms a

representation of the Heisenberg Lie algebra and is the state space of the Heisenberg VA.

Note that π must have a Z+ gradation, that is, π has a basis of monomials b j1 . . .b jk . We

assign to this monomial degree −∑
k
i=1 ji, that is, we set deg1 = 0 and degb j =− j for all

j ≤−1.

The operators bn with n < 0 are known in this context as creation operators, since they
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“create the state bn from the vacuum 1.” On the other hand, the operators bn with n≥ 0 are

the annihilation operators, since repeatedly applying them will “kill” any vector in π .

We must also fix a vacuum state |0〉= 1 ∈ π and also give the translation operator D,

defined by the rules D1 = 0 and [D,bi] =−ibi−1. These formulas uniquely determine D by

induction on the degree of monomials:

D ·bkm = bk ·D ·m+[D,bk] ·m

for any monomial m, and so

D ·b j1 . . .b jk =−
k

∑
i=1

j1b j1 . . .b j1−1 . . .b jk .

We now need to define the state-field correspondence map Y (·,z). To the vacuum state 1, we

must assign Y (1,z) = Id. The most important definition is that of the field Y (b−1,z), since it

will generate π , and we denote Y (b−1,z) by b(z) for convenience. We set

b(z) := ∑
n∈Z

bnz−n−1,

where bn is considered an endomorphism of π . Since degbn =−n, b(z) is indeed a field of

conformal dimension one. Note that b(z) is a generating function for the generators bn of

the Heisenberg Lie algebra. Next we define

Y (b−2,z) := ∂zb(z) = ∑
n∈Z

(−n−1)bnz−n−2.

By induction, we obtain

Y (b−k,z) =
1

(k−1)!
∂

k−1
z b(z).



www.manaraa.com

36

We use normal ordering to define

Y (b2
−1,z) := :b(z)2:.

In general, assigning state-field correspondence maps combines the previous two cases of

b j, j < 0 and b2
−1. We define

Y (b j1b j2 . . .b jk ,z) :=
1

(− j1−1)! · · ·(− jk−1)!
:∂− j1−1

z b(z) · · ·∂− jk−1
z b(z):.

Let us now check that π does indeed satisfy the axioms of a vertex algebra.

The statement Y (|0〉 ,z) = Id follows from our definition. The rest of the vacuum axiom,

lim
z→0

Y (v,z) |0〉= v, (3.5)

follows by induction on the bi. Start with the case v = b−1, where

Y (b−1,z) |0〉= ∑
n∈Z

bnz−n−1 |0〉 .

All of the non-negative bn annihilate the vacuum, so this limit is well-defined, and has as

constant coefficient b−1. Next, from the above definition the vertex operator associated to

each polynomial in each bi is a normally ordered product of derivatives of the basic field

b(z). We only need to check that if (3.5) holds for the field

Y (v,z) = ∑
n∈Z

vnz−n−1,
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then it holds for the field

Y (b−kv,z) =
1

(k−1)!
:∂ k−1

z b(z)Y (v,z):, k > 0.

By definition of the normally ordered product,

1
(k−1)!

:∂ k−1
z b(z)Y (v,z): =

1
(k−1)! ∑

m∈Z

(
∑

n≤−k
(−n−1)(−n−2) · · ·(−n− k +1)bnvm−n+

∑
n≥0

(−n−1)(−n−2) · · ·(−n− k +1)vm−nbn

)
z−k−m−1.

The second sum kills |0〉, and by the inductive assumption, the first sum gives a power series

with only positive powers of z, with the constant term

b−kv−1 |0〉= b−kv.

To check the translation axiom, first observe that we have D |0〉 = 0 by construction.

Next, since [D,b j] = − jb j−1, we have [D,b(z)] = ∂zb(z). In the same way, we can de-

rive [D,∂ n
z b(z)] = ∂ n+1

z b(z). We can use the residue definition of a normal ordering from

Lemma 3.6 to verify that the Leibniz rule holds for the normally product

∂z:a(z)b(z): = :∂za(z)b(z):+ :a(z)∂zb(z):.

This implies that if [D, ·] acts as ∂z on two fields, it will act like this on their normally ordered

product. Through induction this implies the full translation axiom.

Finally, we need to verify that all the fields are mutually local. We begin by showing
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b(z) is local with itself. First we expand the bracket relation

[b(z),b(w)] = ∑
n,m∈Z

[bn,bm]z−n−1w−m−1 = ∑
n∈Z

[bn,b−n]z−n−1wn−1

= ∑
n∈Z

nz−n−1wn−1 = ∂wδ (z−w).

From (3.2) we have that (z−w)2∂wδ (z−w) = 0. This implies that (z−w)2[b(z),b(w)] = 0,

and so we see from Definition 3.3 that the field b(z) is local with itself. From Lemma 3.6 it

follows that ∂ n
z b(z) and ∂ m

w b(w) are mutually local. Dong’s Lemma then shows that Y (u,z)

and Y (v,z) are mutually local for any u,v ∈ π .

3.5 The Virasoro vertex algebra

The Virasoro vertex algebra will become crucial to the definition of vertex operator algebras

below. Consider the Lie algebra with underlying vector space with generators C and Ln for

n ∈ Z, and bracket relations defined as [C,Ln] = 0, and

[Ln,Lm] = (n−m)Ln+m +
n3−n

12
δn,−mC for all n,m ∈ Z. (3.6)

This is the Virasoro Lie algebra, which we denote as Vir.

Now we wish to define a family of representations of Vir. Let V be a vector space

with basis given by expressions of the form Li1Li2 · · ·Lin, with i1 ≤ i2 ≤ . . . ≤ in ≤ −2,

together with the vacuum vector, denoted by 1. For each c ∈ R, we can define a map

fc : Vir→ End(V ) as follows: fc(C) acts as c Id, fc(Ln) acts according to (3.6), and we

impose that for n > 2, we have ( fc(Ln))v = 0. If fc is understood, we simply write Ln for
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fc(Ln). For example,

L−2(L−4L−2)v = [L−2,L−4]L−2v+L−4L−2L−2v

= 2L−6L−2v+L−4L−2L−2v,

and

L2(L−4L−2)v = [L2,L−4]L−2v+L−4L2L−2v

= 6L−2L−2v+L−4[L2,L−2]v

= 6L−2L−2v+
c
2

v.

Observe that the action of fc serves to put the expression into normally ordered form, where

the subscripts are lexicographically ordered. We denote the representation (V, fc) by Virc,

and refer to c as the central charge of the representation.

To define the Virasoro vertex algebra, we take Virc as the state space with its vacuum

vector 1. The gradation on Virc is determined by degLn =−n, deg1 = 0. For the translation

operator, we take D = L−1. For the vertex operators, we begin by setting

Y (L−21,z) := T (z) = ∑
n∈Z

Lnz−n−2.

This is the generating field of Virc. The expansion of the bracket relation between two

generating fields is as follows [2]:

LEMMA 3.10.

[T (z),T (w)] =
c

12
∂

3
wδ (z−w)+2T (w)∂wδ (z−w)+∂wT (w)δ (z−w)
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as a formal power series in z±1, w±1.

Proof. We have

[T (z),T (w)] = ∑
n,m

(n−m)Ln+mz−n−2w−m−2 + c∑
n

n3−n
12

z−n−2wn−2

= ∑
j,l

2lL jw− j−2z−l−1wl−1 +∑
j,l

(− j−2)L jw− j−3z−l−1wl

=
c

12 ∑
l

l(l−1)(l−2)z−l−1wl−3

= 2T (w)∂wδ (z−w)+∂wT (w) ·δ (z−w)+
c

12
∂

3
wδ (z−w),

where we have made the substitutions j = n+m, l = n+1.

We define the rest of the vertex operators as

Y (L j1 . . .L jm1,z) =
1

(− j1−2)!
· · · 1
− jm−2)!

:∂− j1−2
z D(z) . . .∂− jm−2

z D(z):,

where j1 ≤ j2 ≤ ·· · ≤ jm ≤−2. From Lemma 3.10, we have that

(z−w)4[T (z),T (w)] = 0,

and so the generating field T (z) is local with itself. The vacuum axiom is clearly satisfied

by our choice of 1. To check the translation axiom, we must calculate the commutator of
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translation operator D = L−1 and the generating field Y (L−21,z):

[L−1,Y (L−11,z)] = ∑
n∈Z

[L−1,Ln]z−n−2

= ∑
n∈Z

(−n−1)Ln−1z−n−2

= ∑
m∈Z

(−m−2)Lmz−m−3

= ∂zY (L−11,z),

where we used the substitution m = n−1. This verifies the translation axiom.

3.6 Vertex operator algebras

A vertex algebra (V,Y,1,D) is a vertex operator algebra (VOA; also conformal vertex

algebra as in [2]) of central charge c ∈ Z if V can be decomposed as a direct sum

V =
⊕
n∈Z

Vn,

and there exists a non-zero conformal vector ω ∈V2 such that the Fourier coefficients Ln of

the corresponding vertex operator

Y (ω,z) = ∑
n∈Z

Lnz−n−2

satisfy the defining relations of the Virasoro Lie algebra with C acting on V as c Id, and in

addition we have L−1 = D and L0
∣∣
Vn

= n Id .

EXAMPLE 3.11. The Virasoro vertex algebra Virc clearly has central charge c and conformal

vector ω = L−21. It has the decomposition Virc =
⊕

nVn where Vn is the n-eigenspace of

L0.
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EXAMPLE 3.12. The Heisenberg VA π has a natural conformal vector given by

ω =
1
2

b2
−1

of central charge 1. To see that (π,ω) is indeed a VOA, we check that the Fourier coefficients

of the field

L(z) = Y
(

1
2

b2
−1,z

)
=

1
2

:b(z)2: = ∑
n∈Z

Lnz−n−2

satisfy the Virasoro relations, that L−2 = D, and that L0 is the degree operator.

In order to show that the field L(z) satisfies the Virasoro relations, we compute 1
2 :b(z)2:

and then show that the commutator
[1

2 :b(z)2:, 1
2 :b(w)2:

]
satisfies the relation given in Lemma

3.10. We have

1
2

:b(z)2: =
1
2

(b+(z)b(z)+b(z)b−(z))

=
1
2

(b+(z)b+(z)+2b+(z)b−(z)+b−(z)b−(z)) .

Before calculating the commutator, recall that [b+(z),b+(w)]= 0 and similarly [b−(z),b−(w)]=

0. Furthermore, since [b(z),b(w)] = ∂wδ (z−w) (which we will denote by δ ), we may derive

the relations

δ
− := [b−(z),b+(w)] =

1
(z−w)2 , when |w|< |z| , (3.7)

δ
+ := [b+(z),b−(w)] =− 1

(w− z)2 , when |z|< |w| . (3.8)
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So we have that δ−+δ+ = ∂wδ (z−w). Hence,

[
1
2

:b(z)2:,
1
2

:b(w)2:
]

=
[

1
2

b+(z)b+(z)+b+(z)b−(z)+
1
2

b−(z)b−(z),

1
2

b+(w)b+(w)+b+(w)b−(w)+
1
2

b−(w)b−(w)
]

=
[

1
2

b+(z)b+(z),
1
2

b+(w)b+(w)
]
+[

1
2

b+(z)b+(z),b+(w)b−(w)
]
+[

1
2

b+(z)b+(z),
1
2

b−(w)b−(w)
]
+[

b+(z)b−(z),
1
2

b+(w)b+(w)
]
+

[b+(z)b−(z),b+(w)b−(w)]+[
b+(z)b−(z),

1
2

b−(w)b−(w)
]
+[

1
2

b−(z)b−(z),
1
2

b+(w)b+(w)
]
+[

1
2

b−(z)b−(z),b+(w)b−(w)
]
+[

1
2

b−(z)b−(z),
1
2

b−(w)b−(w)
]

= b+(w)b+(z)δ+ +
1
2

(b−(w)b+(w)+b+(z)b−(w))δ
++

b+(z)b+(w)δ−+b+(w)b−(z)δ+ +b+(z)b−(w)δ−+

b−(w)b−(z)δ+ +
1
2

(b+(w)b−(z)+b−(z)b+(w))δ
−+

b−(z)b−(w)δ−

= b+(z)b+(w)δ+ +
1
2

b+(z)b−(w)δ+− 1
2

δ
+

δ
++

1
2

b+(z)b−(w)δ+ +b+(z)b+(w)δ−+b+(w)b−(z)δ++

b+(z)b−(w)δ−b−(w)b−(z)δ+ +
1
2

b+(w)b−(z)δ−+

1
2

b+(w)b−(z)δ−+
1
2

δ
−

δ
−+b−(w)b−(z)δ−.
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After collecting terms, we arrive at

[
1
2

:b(z)2:,
1
2

:b(w)2:
]

= :b(z)b(w):∂wδ (z−w)+
1
2
(
δ
−

δ
−−δ

+
δ

+) . (3.9)

From (3.7) and (3.8) we have that

δ
−

δ
− =

1
(z−w)4 , when |w|< |z| ,

δ
+

δ
+ =

1
(z−w)4 , when |z|< |w| ,

hence

δ
−

δ
−−δ

+
δ

+ = i|w|<|z|
1

(z−w)4 − i|z|<|w|
1

(z−w)4 ,

where i|w|<|z| = 1 in the region where |w|< |z|, and is zero otherwise. Now observe that by

taking partial derivates, we find that

1
(z−w)2 = ∂w

1
(z−w)

,

1
(z−w)3 =

1
2

∂w
1

(z−w)2 ,

1
(z−w)4 =

1
6

∂w
1

(z−w)3 =
1
6

∂
3
w

1
(z−w)

=
1
6

∂
3
wδ (z−w),

thus we have
1
2
(
δ
−

δ
−−δ

+
δ

+)=
1

12
∂

3
wδ (z−w).

Now it remains to deal with the b(z) appearing in the first term of (3.9), for which we expand

the normally ordered product to get

:b(z)b(w):∂wδ (z−w) = (b+(z)b(w)+b(w)b−(z))∂wδ (z−w).
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First, recalling (3.1), we have

b(w)b−(z)δ (z−w) = b(w)b−(w)δ (z−w).

We take the partial derivate with respect to w of both sides to get

∂wb(w)b−(z)δ (z−w)+b(w)b−(z)∂wδ (z−w) = ∂wb(w)b−(w)δ (z−w)+

b(w)∂wb−(w)δ (z−w)+

b(w)b−(w)∂wδ (z−w)

Again, using (3.1), we may cancel the first term of both sides to get

b(w)b−(z)∂wδ (z−w) = b(w)∂wb−(w)δ (z−w)+b(w)b−(w)∂wδ (z−w).

We repeat this process to see that

b+(z)b(w)∂wδ (z−w) = ∂wb+(w)b(w)δ (z−w)+b+(w)b(w)∂wδ (z−w).

We can substitute these two new equations into (3.9) to get

[
1
2

:b(z)2:,
1
2

:b(w)2:
]

= ∂wb+(w)b(w)δ (z−w)+b+(w)b(w)∂wδ (z−w)+

b(w)∂wb−(w)δ (z−w)+b(w)b−(w)∂wδ (z−w)+

1
6

∂
3
wδ (z−w)

= :∂wb(w)b(w):δ (z−w)+ :b(w)b(w):∂wδ (z−w)+

1
12

∂
3
wδ (z−w).

This satisfies the relation in Lemma 3.10. The remaining two conditions are easy to verify.
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We have

L−1 =
1
2 ∑

i+ j=−1
bib j.

This operator kills the vacuum, because if i+ j =−1 then i 6= j and either i≥ 0 or j ≥ 0,

and thus

[L−1,bk] =−kbk−1.

Therefore L−1 = D. Finally,

L0 = ∑
n>0

b−nbn = ∑
n>0

nb−n
∂

∂b−n
.

Then L0 acts as eigenvalues on the Vn, that is,

Vn = { v ∈V | L0v = nv } ,

and in general L0 acts on a monomial as

L0(L j1L j2 · · ·L jk) =−( j1 + j2 + · · ·+ jk)L j1L j2 · · ·L jk .

3.7 Partition functions

In physics (especially statistical mechanics), the partition function describes the properties

of an observable in a physical system. We can also view the partition function as a generating

function for the expected values of random variables in our system. It is possible to calculate

a partition function from a given VOA, and it is crucial that this partition function matches

that of the system it is trying to model.

In general, for a VOA (V,Y,1,D) having state space decomposition V =
⊕

n∈ZVn and
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central charge c, the partition function of V is

ZV (q) = TrqL0−c/24 = q−c/24
∑
n∈Z

dimVnqn. (3.10)

To see how this formula arises, suppose Vn has basis v1, . . . ,vk. We have L0vi = nvi since L0

acts as the eigenvalue n. Then

qL0vi = e2πiτL0vi = qnvi,

so we have

Tr
∣∣
Vn

qL0 =
k

∑
i=1

qn = kqn = dimVnqn.

EXAMPLE 3.13. Consider the Heisenberg VOA with state space π and conformal vector

ω = 1
2b2
−1 of central charge c = 1. Using (3.10), we have

Zπ(q) = q−1/24
∑
n∈Z

dimπnqn = q−1/24
∞

∏
n=1

1
1−qn =

1
η(q)

,

where η is the Dedekind eta function discussed in Section 2.5.1, and so Zπ is in fact a

modular form of weight −1/2. To see the second equality above, recall that the series

1
1− t

= 1+ t + t2 + t3 + · · ·

is a generating function, the coefficients of which count the number of monomials in one

variable of each degree (in this case, there is one monomial of each degree). By taking the

product of generating functions

(
1

1− t

)(
1

1− s

)
= 1+ t + s+ ts+ t2 + s2 + · · · ,
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and then setting t = s, we have a way of counting the number of monomials in two variables

of each degree. So it is in this way that we can count the number of monomials qn of each

degree from the coefficients of the generating function

∞

∏
n=1

1
1−qn = 1+q+2q2 +3q3 +5q4 · · · .

EXAMPLE 3.14. The partition function of the Virasoro VOA Virc is computed in a similar

fashion to that of the Heisenberg VOA, in that we wish to find the dimension of each Vn by

counting the number of monomials of weighted degree n. This differs from the calculation

done for the Heisenberg VOA as there are no monomials having degree 1 in the Virasoro

VOA. Hence,

ZVirc(q) = q−c/24
∑
n∈Z

dimVnqn = q−c/24
∏
n≥2

1
1−qn .

Note that this partition function is not a modular form.
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